Intel presenta investigaciones sobre eficiencia energética

Intel presentó investigaciones y perspectivas técnicas sobre la transformación de la computación impulsada en los datos que se distribuye cada vez más en los núcleos del centro de datos, edge y los puntos terminales. El director de Tecnología Mike Mayberry dio el discurso plenario de apertura, El Futuro de la Computación: Cómo los datos están transformando la tecnología VLSI (integración a gran escala), resaltando la importancia de hacer la transición de la computación de un enfoque centrado en el hardware a un enfoque basado en los datos o la información.   

Vivek Singh, investigador de Intel y director de Investigación de Tecnología de Circuitos de Intel Labs indicó: ‘El enorme volumen de datos distribuido que fluye a través de la infraestructura, la red y la nube exige que el procesamiento potente y de bajo consumo de energía se lleve a cabo cerca del lugar donde se generan los datos, sin embargo, con frecuencia está limitado por el ancho de banda, la memoria y los recursos energéticos’.

‘La investigación que presenta Intel Labs, en los Simposios VLSI, resalta varios enfoques novedosos hacia una informática más eficiente, son prometedores para una amplia gama de aplicaciones – desde robótica y la realidad aumentada hasta la visión de máquinas y el análisis de video. Estas investigaciones se enfocan en abordar las barreras hacia la transición y computación de los datos, lo cual representa los desafíos de datos del futuro’.

Respecto a los trabajos de investigación de Intel Labs, algunos de los temas cubiertos son:

Mejorando la eficiencia y precisión de la reconstrucción de escenas 3D al utilizar aceleradores de hardware de fundición de rayos

Un acelerador de fundición de rayos en CMOS de 10 nm, para la reconstrucción eficiente de escenas 3D en aplicaciones de Edge Robotics y realidad aumentada.

Ciertas aplicaciones, como EdgeRobotics y la realidad aumentada, necesitan de una reconstrucción precisa, rápida y de bajo consumo de energía en escenas 3D complejas a partir de los enormes volúmenes de datos generados por operaciones de fundición de rayos, para la localización y mapeo simultáneo (SLAM) denso en tiempo real.

En este trabajo de investigación, Intel resalta un novedoso acelerador de hardware de fundición de rayos, que aprovecha nuevas técnicas para mantener la precisión en la reconstrucción de escenas, al tiempo que se logra un desempeño superior de bajo consumo de energía. Estos enfoques innovadores —incluyendo técnicas como la búsqueda de superposición de vooxels y la aproximación de voxels asistida por hardware — reducen la demanda de acceso a la memoria local, además de mejorar la eficiencia para las aplicaciones al edge de robótica y realidad aumentada futuras.

Reducción de gastos de energía en el análisis de transmisión de video basado en el Deep learning con la unidad de procesamiento de datos visuales activado por eventos (EPU)

Una unidad de procesamiento de datos visuales activados por eventos 0.05pJ/Pixel 70fps FHD 1Meps.

La analítica de datos visuales basada en el deep learning, que se usa en aplicaciones como Seguridad y Protección, implica la detección rápida de objetos a partir de las transmisiones de múltiples videos y requiere de elevados ciclos de cómputo y ancho de banda de memoria. Tradicionalmente se reduce el tamaño de los cuadros de entrada de estas cámaras para minimizar esa carga, lo cual degrada la precisión de la imagen.

En esta investigación, Intel demuestra una unidad de procesamiento de datos visuales activado por eventos (EPU) que – combinado con algoritmos novedosos – puede dar instrucciones a los aceleradores de deep learning de que solo procesen las entradas visuales usando “regiones de interés” basadas en el movimiento. Este enfoque novedoso alivia los elevados requisitos de cómputo y memoria de la analítica visual en el edge.

Expandir el ancho de banda de la memoria local para aplicaciones de inteligencia artificial, machine learning y Deep learning

6T-SRAM, memoria de acceso aleatorio estática de 6 transistores de dos veces mayor de ancho de banda para cargas de trabajo limitadas.

Muchos chips de inteligencia artificial– sobre todo los que se usan para el procesamiento de lenguaje natural como los asistentes de voz – cada vez están más restringidos por el acceso a la memoria local. La duplicación de frecuencia o el incremento en el número de bancos para abordar estos retos se realizan a cambio de menor eficiencia energética y de área, sobre todo en dispositivos edge de área limitada.

Con esta investigación, Intel demostró el uso de una matriz 6T-SRAM para proporcionar ancho de banda de lectura en demanda dos veces mayor en la operación del modo de ráfaga, con una eficiencia energética 51% mayor que la duplicación de frecuencia y 30% mejor eficiencia de área que duplicando el número de bancos.

Acelerador de redes neuronales binarias totalmente digitales.

Acelerador de redes neuronales binarias totalmente digitales 617TOPS/W en tecnología FinFET CMOS de 10 nm.

En los dispositivos de borde de energía y recursos limitados en donde son aceptables las salidas de baja precisión para algunas aplicaciones, se han usado las redes neuronales binarias (BNN) analógicas como alternativa para las redes neuronales de mayor precisión, que son más exigentes computacionalmente y de uso intensivo de memoria.

Sin embargo, las redes neuronales binarias analógicas son menos precisas en la predicción, ya que son menos tolerantes a las variaciones y el ruido de los procesos. A través de esta investigación, Intel demuestra el uso de una BNN completamente digital que ofrece eficiencia energética similar a las técnicas en memoria analógicas, además de proporcionar mayor robustez y escalabilidad a los nodos de proceso avanzado.

Salir de la versión móvil